Rationale for and Results from a Randomized Withdrawal Period Following Long-Term Administration of Diazoxide Choline Extended-Release Tablets to People with Prader-Willi Syndrome

FPWR Research Conference 2023 Dr. Jennifer L. Miller University of Florida

Certain Notices and Disclaimers

Forward-Looking Statements

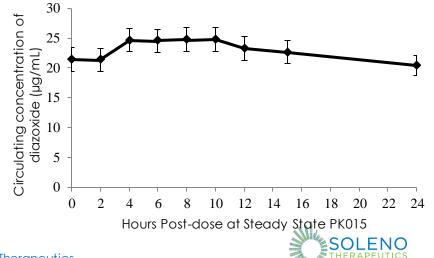
This presentation contains forward-looking statements that are subject to many risks and uncertainties. Forward-looking statements appear in a number of places throughout this presentation and include statements regarding our intentions, beliefs, projections, outlook, analyses or current expectations concerning, among other things, our ongoing and planned product development and clinical trials; the timing of, and our ability to make, regulatory filings and obtain and maintain regulatory approvals for our product candidates; our intellectual property position; the degree of clinical utility of our products, particularly in specific patient populations; our ability to develop commercial functions; expectations regarding product launch and revenue; our results of operations, cash needs, and spending of the proceeds from this offering; financial condition, liquidity, prospects, growth and strategies; the industry in which we operate; and the trends that may affect the industry or us.

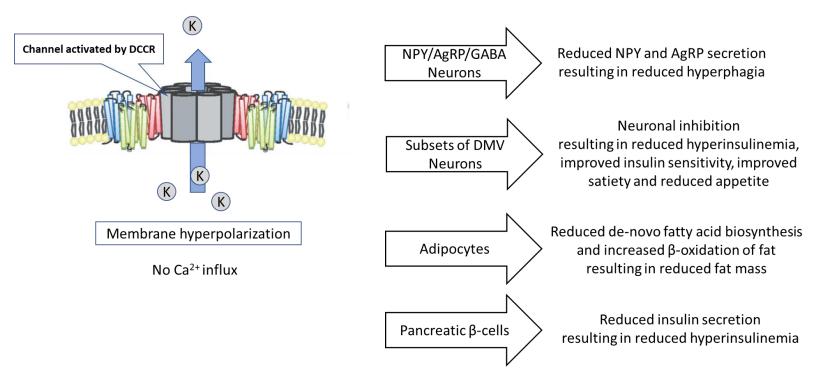
We may, in some cases, use terms such as "believes," "estimates," "anticipates," "expects," "plans," "intends," "may," "could," "might," "will," "should," "approximately" or other words that convey uncertainty of future events or outcomes to identify these forward-looking statements. Although we believe that we have a reasonable basis for each forward-looking statement contained in this presentation, we caution you that forward-looking statements are not guarantees of future performance and that our actual results of operations, financial condition and liquidity, and the development of the industry in which we operate may differ materially from the forward-looking statements contained in this presentation.

You should also read carefully the factors described in the "Risk Factors" sections and other parts of our Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q, available at <u>www.sec.gov</u>, in order to better understand the risks and uncertainties inherent in our business and underlying any forward-looking statements. As a result of these factors, we cannot assure you that the forward-looking statements in this presentation will prove to be accurate. Furthermore, if our forward-looking statements, you should not regard these statements as a representation or warranty by us or any other person that we will achieve our objectives and plans in any specified timeframe, or at all. Any forward-looking statements that we make in this presentation speak only as of the date of such statement, and we undertake no obligation to update such statements to reflect events or circumstances after the date of this presentation or to reflect the occurrence of unanticipated events.

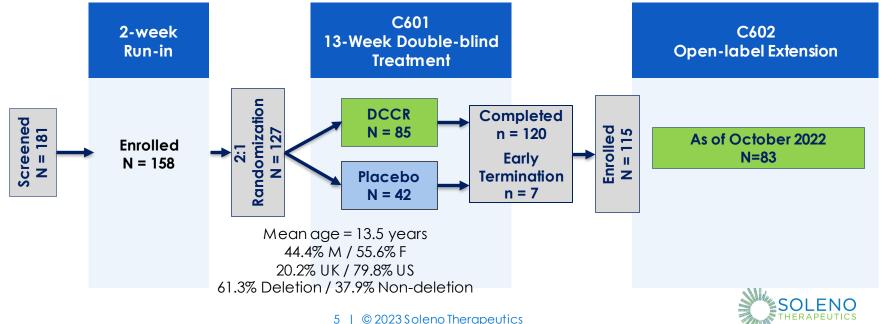
Analyses in this presentation are preliminary and may be subject to change

DCCR Was Developed to Facilitate Once Daily Dosing and Improve Response


 Choline salt chosen to improve solubility

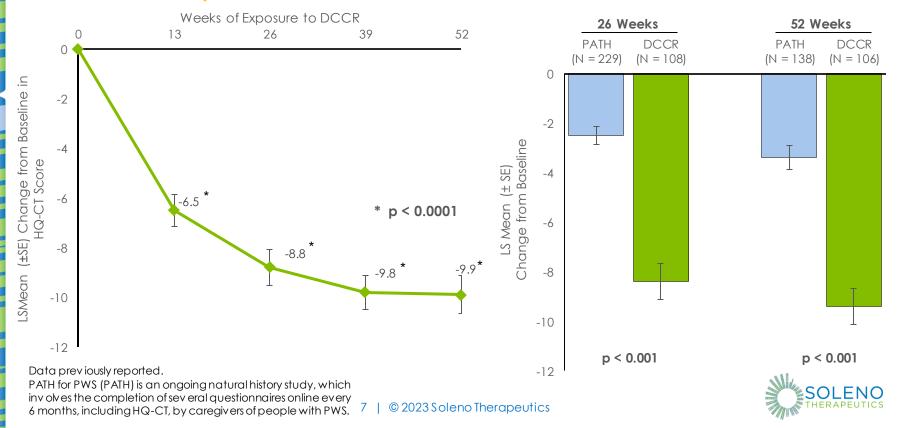

 Formulation developed to extend absorption throughout the GI tract Titration and dosing optimized to safely reach target dose and maintain therapeutic response

- DCCR dosed once daily to achievestable intraday circulating drug levels
- Strong relationship between circulating drug levels with DCCR and therapeutic responses in PWS


Mechanism of Action in PWS

DCCR Phase 3 Clinical Program Design

- C601 (DESTINY PWS): Multi-center, randomized, double-blind, placebocontrolled, parallel arm study in patients with PWS (Phase 3)
- C602: Open-label safety extension study


C601 Primary and Key Secondary Endpoints

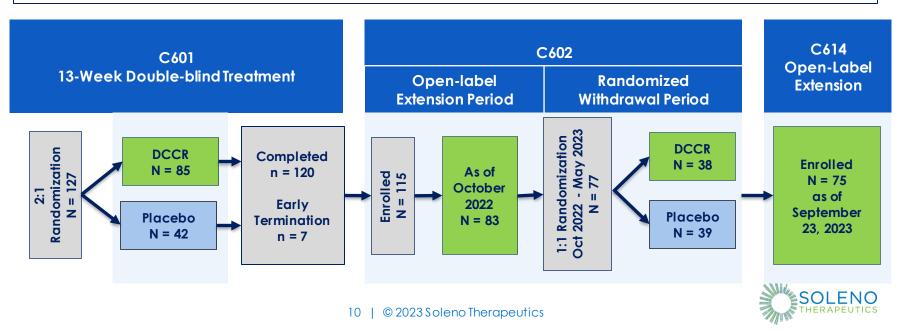
	All Data		Observed Data through March 1, 2020	
Primary Endpoint	DCCR (N = 82)	Placebo (N = 42)	DCCR (N = 82)	Placebo (N = 42)
Mean (SE) Change from Baseline in Hyperphagia at Visit 7	-5.94 (0.88)	-4.27 (1.15)	-6.64 (1.00)	-3.51 (1.28)
LS Mean Difference [DCCR-Placebo] (SE)	-1.67(1.29)		-3.13 (1.48)	
p-value	0.198		0.037	
Key Secondary Endpoints	p-ve	alue	p-ve	alue
Clinical Global Impression of Improvement at Visit 7 (CGI-I)	0.03		0.015	
Mean Change From Baseline in Body Fat Mass (DXA) at Visit 7	0.023		0.003	
Caregiver Global Impression of Change at Visit 7 (Caregiver GI-C)	0.41		0.031	

Data previously reported.

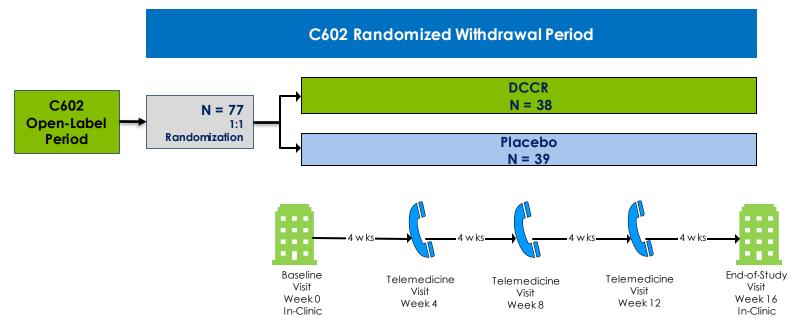
C601/C602 Hyperphagia Change from Baseline and Comparison to PATH for PWS

Other Significant Endpoints at 1 Year

- Other significant endpoints at 1 year of DCCR administration
 - Behavioral:
 - Improvements in all domains of the PWSP and DBC2 total score and all subscales (all p<0.0001)
 - Body composition
 - Lean body mass and lean body mass/fat mass ratio increased (both p<0.001)
 - Hormonal and endocrine
 - Leptin, insulin and HOMA-IR decreased (all p<0.004) and adiponectin increased (p<0.0001)
 - Disease severity
 - Clinical Global Impression of Severity and Caregiver Global Impression of Severity improved (both p<0.0001)


DCCR Safety Profile

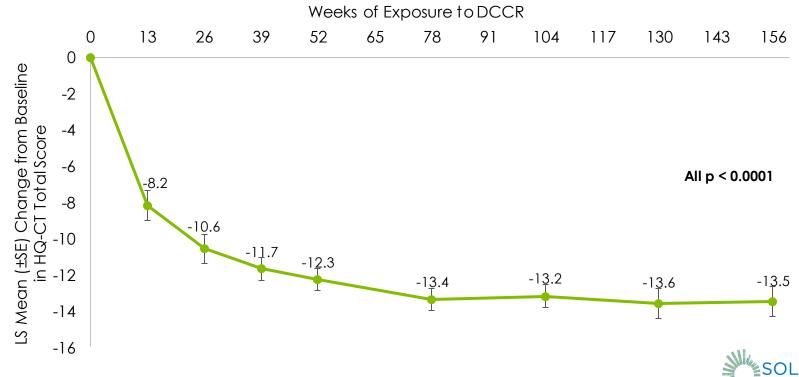
- ~100 patients treated for more than one year
- Safety profile generally consistent with prior experience with DCCR and the known profile of diazoxide
- The most common adverse events reported were
 hypertrichosis, peripheral edema and hyperglycemia
- Most events were Grade 1 or 2 in severity, no Grade 4 or higher events
- Typically self-limiting, some needing dose adjustment or treatment (e.g., with oral antidiabetics or short course diuretics)
- No DCCR-related serious unexpected adverse events (SUSARs)



DCCR Phase 3 Updated Clinical Program

- FDA stated that additional controlled data are necessary to support an NDA submission
- In June 2022, the FDA acknowledged that data from a proposed randomized withdrawal period of C602 would potentially suffice
 - Subjects currently enrolled in C602, no new subjects

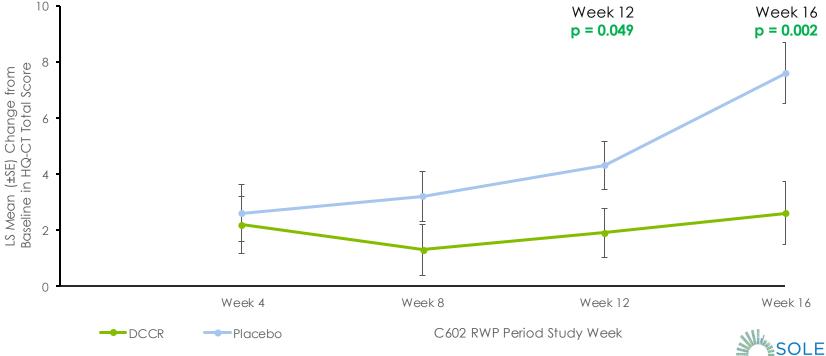
C602 Randomized Withdrawal Study Design



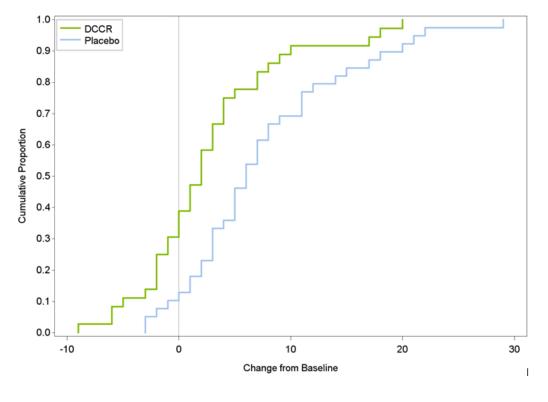
C602 RWP Participant Demographics and Baseline Characteristics Comparable Across Treatment Groups

At RWP Randomization	DCCR N=38	Placebo N=39	All Subjects N=77
Age (Range) (yrs)	15.6 (7 – 29)	14.2 (9 – 23)	14.9 (7 – 29)
Female / Male (%)	47 / 53	64 / 36	56 / 44
Race (%White / %Black / %Multiple)	84 / 5 / 11	87 / 8 / 5	86 / 7/ 8
Weight (Range) (kg)	73.7 (29.7 – 143.2)	61.7 (33.3 – 92.4)	67.6 (29.7 – 143.2)
BMI (Range) (kg/m²)	28.5 (15.6 – 49.0)	25.3 (16.1–37.6)	26.9 (15.6 – 49.0)
Growth Hormone Use (n)	33	36	69
USA / UK (%)	84 / 16	77 / 23	81 / 20
HQ-CT Total Score	9.0 (0-26)	8.1 (0–19)	8.5 (0–26)
HQ-CT Category (<13 / 13-36 [%])	74 / 26	77 / 23	75 / 25

C602 Long-term HQ-CT Changes from Baseline Durable Response Over >2 years

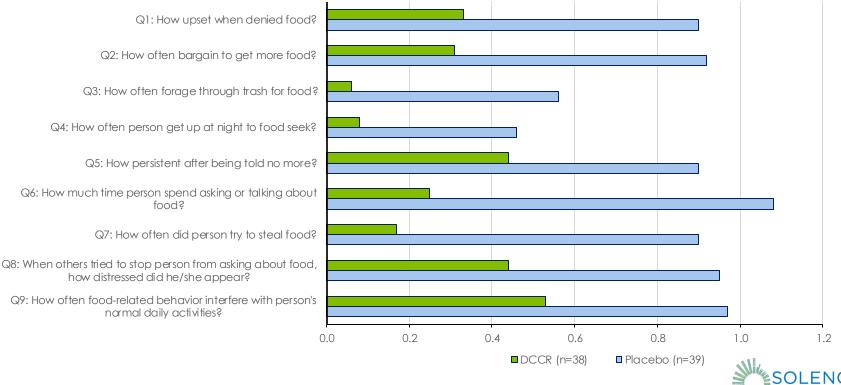

C602 RWP Primary Endpoint: HQ-CT Total Score at Week 16 Change from Baseline – Highly Statistically Significant

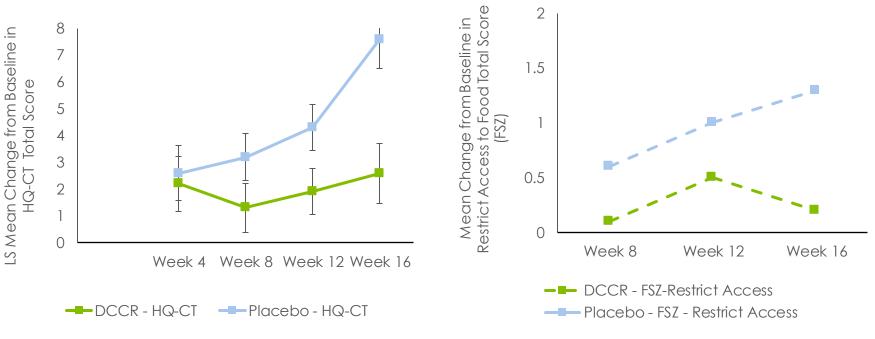
Week 16	DCCR N=38	Placebo N=39	DCCR vs Placebo
LSMean Change from	2.6 (0.3, 4.8)	7.6 (5.4, 9.7)	-5.0 (-8.1, -1.8)
Baseline in HQ-CT Total Score			p=0.0022


C602 RWP HQ-CT Total Score at Week 16 Change from Baseline for DCCR Compared to Placebo

LS Mean change from baseline highly statistically significant at Week 16; also statistically significant at Week 12

15 | © 2023 Soleno Therapeutics


eCDF of Changes from Baseline HQ-CT Total Score to Week 16


16 | © 2023 Soleno Therapeutics

C602 RWP HQ-CT Question by Question at Week 16 Mean changes from baseline were worse (i.e., increased) for placebo than for DCCR on every question

17 | © 2023 Soleno Therapeutics

C602 RWP Changes from Baseline in HQ-CT Greater restrictions on food access in placebo group compared to DCCR

C602 RWP HQ-CT Total Score at Week 16 Statistically Significant Changes from Baseline in Subgroups

Subgroup	LS Mean Difference (95% CI)	p-value
Overall	-5.0 (-8,1, -1.8)	0.0022
Sex		
Male	-6.0 (-11.0, -1.1)	0.019
Female	-4.7 (-9.0, -0.5)	0.031
RWP Baseline HQ-CT Total Score		
< 13	-4.9 (-8.6, -1.1)	0.012
13 - 36	-6.5 (-12.4, -0.6)	0.033
Country		
USA	-4.5 (-8.3, -0.7)	0.020
UK	-7.9 (-12.3, -3.6)	0.002
	•	SOL ENG

C602 RWP Secondary Endpoints at Week 16 Strong trends showing worsening with Placebo

Secondary Endpoint	DCCR vs Placebo
Clinical Global Impression of Severity (CGI-S)	p = 0.079
Clinical Global Impression of Improvement (CGI-I)	p = 0.092

C602 RWP Behavioral Endpoints at Week 16 All PWSP Domains Trending in Favor of DCCR

PWSP Domain	DCCR worse than Placebo	Placebo worse than DCCR
Aggressive Behaviors		\checkmark
Anxiety		\checkmark
Rigidity, Irritability		\checkmark
Compulsivity		\checkmark
Depression		\checkmark
Disordered Thinking		\checkmark

C602 RWP LSMean (SE) Changes from Baseline at Week 16 in Body Weight and BMI

Parameter	DCCR (N = 38)	Placebo (N = 39)	Difference (95% CI)	p-value
Body Weight (kg)	0.8 (0.58)	2.4 (0.56)	-1.6 (-3.1, -0.1)	0.035
BMI (kg/m²)	0.2 (0.22)	0.8 (0.22)	-0.6 (-1.2, -0.1)	0.034

C602 RWP Safety Summary No DCCR-related serious TEAEs and no new safety signals

Adverse Event Overview

TEAEs – Most Frequent

No. of subjects who experienced at least one:	DCCR N = 38 n (%)	Placebo N = 39 n (%)	All Subjects N = 77 n (%)
TEAE	28 (73.7)	29 (74.4)	57 (74.0)
TEAE related to study drug	7 (18.4)	11 (28.2)	18 (23.4)
TEAE leading to premature discontinuation of study drug	0	0	0
Serious TEAE (SAE)	0	1 (2.6)	1 (1.3)
SAE related to study drug or leading to death	0	0	0

Preferred Term	DCCR N = 38 n (%)	Placebo N = 39 n (%)	All Subjects N = 77 n (%)
Dermatillomania	5 (13.2)	6 (15.4)	11 (14.3)
Abnormal behavior	5 (13.2)	5 (12.8)	10 (13.0)
Aggression	3 (7.9)	5 (12.8)	8 (10.4)
Hypertrichosis	2 (5.3)	5 (12.8)	7 (9.1)
Food craving	3 (7.9)	4 (10.3)	7 (9.1)

Summary C602 RWP Highly statistically significant change in primary endpoint supported by secondary and key objective endpoints

Primary Endpoint	Secondary	/ Endpoints	Objective	Endpoints
HQ-CT Total Score	CGI-S	CGI-I	Body Weight (kg)	BMI (kg/m²)
p = 0.0022	p = 0.079	p = 0.092	p = 0.035	p = 0.034

- Mean differences all PWS behavioral domains of the PWSP (i.e., aggressive behaviors, anxiety, rigidity/irritability, compulsivity, depression, and disordered thinking) favored DCCR over placebo
- No new safety signals, no DCCR-related serious TEAEs

CGI-S = Clinical Global Impression of Severity CGI-I = Clinical Global Impression of Improvement

C614 Open Label Extension

- 76 of 77 completed C602 RWP
 - 1 subject discontinued early due to withdrawal of caregiver consent, not due to safety issues
- 74 of 76 have entered C614 and back on DCCR
 - 2 subjects scheduled to start shortly
- 1 subject who had declined to participate in C602 RWP has also started C614

Soleno wishes to extend their heartfelt appreciation and thanks to:

- The study participants, your caregivers and your families for your participation in our development program for > 3 years
- FPWR, PWSA-USA, PWSA-UK, IPWSO, and individual advocates for their continued support
- Our investigators and their study staff for conducting these studies

C602 Investigative Sites – 20 (US), 9 (UK)

Site #	Principal Investigator	Institution	Location
50	Tony Goldstone	Hammersmith Hospital	London
51	Nicola Bridges	Chelsea & Westminster Hospital	London
52	Evelien Gevers	Royal London Hospital	London
53	Tony Holland	Fulbourn Hospital	Cambridge
54	John Wilding	Aintree Hospital	Liv erpool
55	Timothy Barrett	Birmingham Children's Hospital	Birmingham
56	Guftar Shaikh	Royal Hospital for Children	Glasgow
57	Poonam Dharmaraj	Alder Hey Children's Hospital	Liv erpool
58	Verghese Mathew	Hull Royal Hospital	Hull
70	Jennifer Abuzzahab	Children's Minnesota	St. Paul MN
71	Lynne Bird	Rady Children's Hospital / UCSD	San Diego CA
72	Merlin Butler	Kansas Univ ersity Medical Center	Kansas City KS
73	Shawn McCandless	Children's Hospital Colorado	Aurora CO
74	Jennifer Miller	University of Florida	Gainesville FL

Site #	Principal Investigator	Institution	Location
75	Parisa Salehi	Seattle Children's Hospital	Seattle WA
76	Laura Konzcal	UH Medical Center	Clev eland OH
77	Ashley Shoemaker	Vanderbilt University	Nashville TN
78	Amy Fleischman	Boston Children's Hospital	Boston MA
79	David Stevenson	Stanford University	Palo Alto CA
80	Jorge M. Corletto	Winthrop University Hospital	Mineola NY
81	David Viskochil	University of Utah	Salt Lake City UT
82	Jack Yanovski	NICHD	Baltimore MD
83	Kathryn Obrynba	Nationwide Children's Hospital	Columbus OH
84	Virginia Kimonis	UC Irvine	Irvine CA
86	Eric Felner	Emory University	Atlanta GA
87	Melissa Lah	Indiana University Hospital	Indianapolis IN
88	Elizabeth Littlejohn	Sparrow Clinical Research Institute	Lansing MI
89	Katerina Harwood	St. Joseph's Medical Center	Paterson NJ
90	Heidi Shea	Research Institute of Dallas	Dallas TX

Blue, bold text = C602 RWP Sites 17 (US), 5 (UK)