Corporate Presentation

February 2021 | Soleno Therapeutics

Certain Notices and Disclaimers

Forward-Looking Statements

This presentation contains forward-looking statements that are subject to many risks and uncertainties. Forward-looking statements appear in a number of places throughout this presentation and include statements regarding our intentions, beliefs, projections, outlook, analyses or current expectations concerning, among other things, our ongoing and planned product development and clinical trials; the timing of, and our ability to make, regulatory filings and obtain and maintain regulatory approvals for our product candidates; our intellectual property position; the degree of clinical utility of our products, particularly in specific patient populations; our ability to develop commercial functions; expectations regarding product launch and revenue; our results of operations, cash needs, and spending of the proceeds from this offering; financial condition, liquidity, prospects, growth and strategies; the industry in which we operate; and the trends that may affect the industry or us.

We may, in some cases, use terms such as "believes," "estimates," "anticipates," "expects," "plans," "intends," "may," "could," "might," "will," "should," "approximately" or other words that convey uncertainty of future events or outcomes to identify these forward-looking statements. Although we believe that we have a reasonable basis for each forward-looking statement contained in this presentation, we caution you that forward-looking statements are not guarantees of future performance and that our actual results of operations, financial condition and liquidity, and the development of the industry in which we operate may differ materially from the forward-looking statements contained in this presentation.

You should also read carefully the factors described in the "Risk Factors" sections and other parts of our Annual Report on Form 10-K and Quarterly Report on Form 10-Q, available at www.sec.gov, in order to better understand the risks and uncertainties inherent in our business and underlying any forward-looking statements. As a result of these factors, we cannot assure you that the forward-looking statements in this presentation will prove to be accurate. Furthermore, if our forward-looking statements prove to be inaccurate, the inaccuracy may be material. In light of the significant uncertainties in these forward-looking statements, you should not regard these statements as a representation or warranty by us or any other person that we will achieve our objectives and plans in any specified timeframe, or at all. Any forward-looking statements that we make in this presentation speak only as of the date of such statement, and we undertake no obligation to update such statements to reflect events or circumstances after the date of this presentation or to reflect the occurrence of unanticipated events.

Soleno Therapeutics (NASDAQ: SLNO)

Strategic Highlights

Orphan asset in Phase III Program for Prader-Willi syndrome

Topline data reported in June 2020

Significant commercial potential in PWS, an orphan indication with high unmet need.

No approved treatments for hyperphagia, the hallmark symptom of PWS IP protection to mid-2030s

Protected by multiple layers of granted and pending patents

Provides composition of matter protection, as well as protection of formulations, and method of use

Substantial potential for patent term extension

Orphan Drug and Fast Track Designations

Orphan designation in the US and EU. Fast Track granted

Significant upside potential in other indications

Compelling product profile

Addresses hallmark symptoms of PWS

Clinically relevant improvements in hyperphagia, behaviors, and body composition with established decades-long safety profile Financed by leading healthcare investors

Financed
Phase III Program

Leading HC-focused institutional investors, Abingworth, Vivo, Oracle Partners and

Leadership Team

- Anish Bhatnagar, M.D.
 Chief Executive Officer
- Jim Mackaness

 Chief Financial Officer
- Neil M. Cowen, Ph.D.
 Senior VP, Drug Development
- Kristen Yen, M.S.
 VP, Clinical Operations
- Patricia C. Hirano, M.P.H.
 VP, Regulatory Affairs

Essentialis

Prader-Willi Syndrome (PWS)

- Complex genetic neurobehavioral/metabolic disorder due to the loss or lack of expression of a set of genes on chromosome 15
- Birth incidence ~1:15,000 live births
- Elevated mortality rates; average life expectancy ~30 years
- Highest unmet needs
 - Hyperphagia
 - Increases in lean body mass/reductions in fat mass
 - PWS-related behaviors
- PWS families have low QOL
 - Non-PWS siblings show high rates of post traumatic stress syndrome

DCCR Once Daily Tablets

Daily Dosing Critical to Facilitate Independence and Compliance

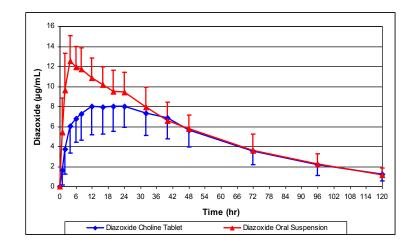
Tablet formulation of choline salt of diazoxide (diazoxide choline is an NCE)

DCCR allows for gradual absorption of diazoxide over 24 hours

Protected by multiple issued patents, including composition of matter

More than 330 subjects investigated, including more than 120 with PWS

Ongoing Phase III program in PWS



Diazoxide is Not Approved for Use in PWS

Use of diazoxide-based dosage forms in PWS blocked by issued Soleno patent claims

- Oral K_{ATP} channel agonist approved in 1976
- More than 40 years' chronic use in neonates/infants, children, and adults
- Only current use in ultra-rare condition of hyperinsulinism

- Only oral suspension currently marketed in US
- Long, bitter aftertaste
- Problems with dose uniformity
- Rapid protein binding of diazoxide

- BID/TID dosing required
- Rapid absorption \rightarrow high C_{max}
- Several of the most common adverse events C_{max}-associated

DCCR Proposed Mechanism of Action

Appetite controlled by 2 sets of neurons in the hypothalamus

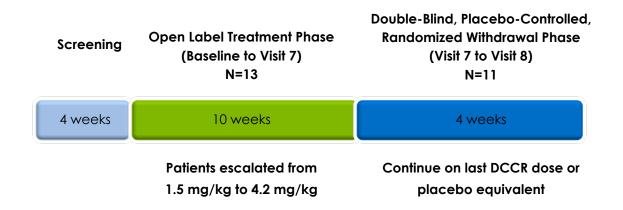
- NPY/AgRP: secrete NPY and AgRP, appetite stimulatory neuropeptides
- POMC: secretes POMC, an appetite suppressive neuropeptide

NPY expression is elevated in PWS

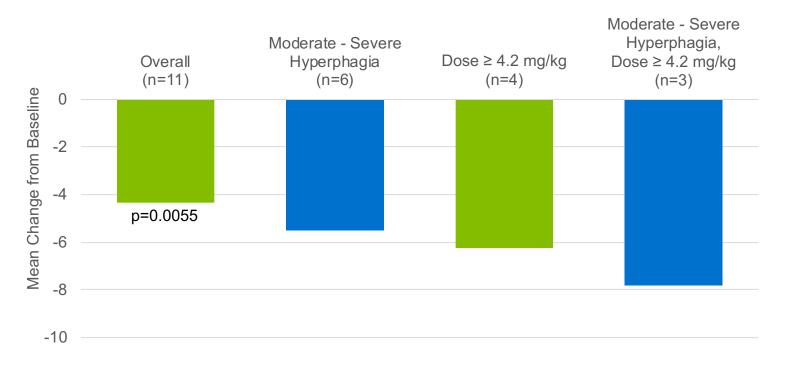
- Loss of SNORD116 in the PWS critical region on chromosome 15 leads to NPY overexpression
- Elevations in NPY drive hyperphagia

DCCR agonizes K_{ATP} channels in NPY/AgRP neurons

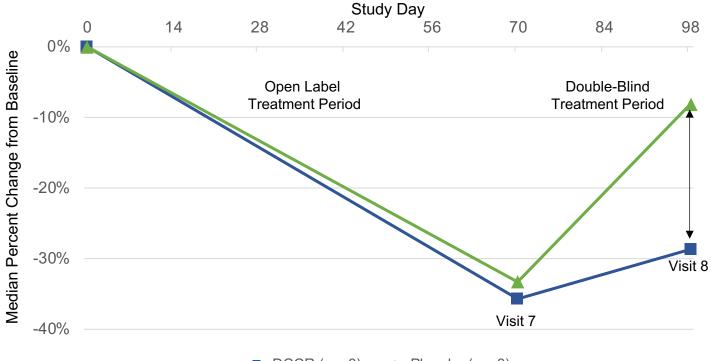
 Reduces secretion of NPY and AgRP, thereby reducing hyperphagia


Evidence of efficacy in multiple animal models of NPY-associated obesity with hyperphagia

Animal model	Model of	Significant positive effects on	Reference
MAGEL2 mouse	Prader-Willi syndrome	Hyperphagia, body fat, glycemic control, energy expenditure	Mol Genet Metab 2018 123(4):511-517
Zucker fatty rat	LepR deficient obesity	Hyperphagia, rate of weight gain, glycemic control and insulin sensitivity	Endocrinology 1999 140(7):3197-3202.
Zucker diabetic fatty rat	LepR deficient obesity	Hyperphagia, rate of weight gain, glycemic control, leptin, adiponectin, circulating lipids and hepatic lipid content	Endocrinology 2004; 145:5476–5484 and Med Sci Monit 2005 11(12):BR439-448.
Db/Db mouse	LepR deficient obesity	Completely eliminated hyperphagia	Life Sci 1981 28(15-16):1829-40.
OLETF fatty rat	CCK1 receptor deficiency	Hyperphagia, rate of weight gain, body fat, glycemic control, hepatic lipid content	J Diabetes & Its Complications 2008; 22:46-55.
High fat diet induced obese mouse	Induced obesity with hyperphagia	Reduced caloric intake, weight loss, loss of body fat, circulating lipids, glycemic control	Mol Genet Metab 2018 123(4):511-517; Endocrin 2000 141(10):3630-3637
VMH lesioned rat	Hypothalamic obesity	Completely eliminated hyperphagia	Pharmacol Biochem & Behav 1978 9:717-720.
VMH lesioned chicken	Hypothalamic obesity	Hyperphagia	Physiol Behav 1983 30(3):325-329.


DCCR Pilot Study in PWS

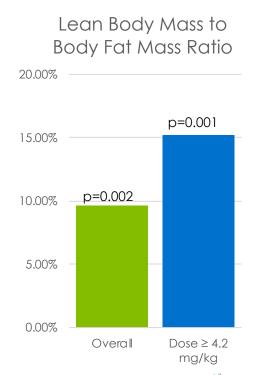
- Randomized, Placebo Withdrawal, Single-Center Study of DCCR in obese, genetically-confirmed PWS patients ages 10 to 22 years
 - Included subjects with mild as well as moderate-to-severe hyperphagia
 - 5 subjects enrolled in a subsequent 6-month open-label extension study



Hyperphagia Response During Open-Label Treatment Greater at Highest Dose and Moderate-Severe Hyperphagia

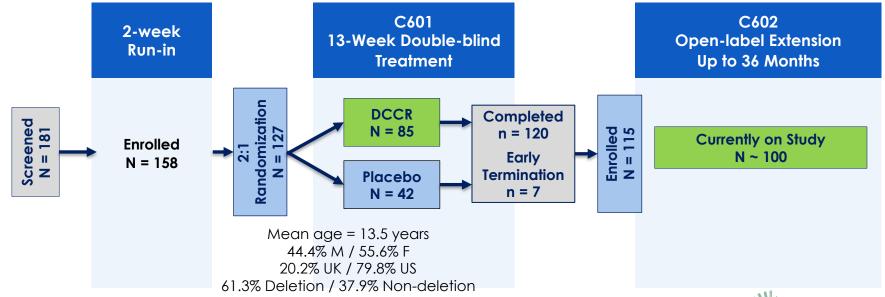
PC025: Changes in Hyperphagia in Subjects with Moderate to Severe Hyperphagia at Baseline




PLoS One. 2019 Sep 23;14(9):e0221615

→ DCCR (n = 3) **→** Placebo (n = 3)

PC025: DCCR Impact on Body Fat and Lean Body Mass



PLoS One. 2019 Sep 23;14(9):e0221615

Phase III Program Design

- C601 (DESTINY PWS): Multi-center, randomized, double-blind, placebocontrolled, parallel arm study in patients with PWS (Phase III)
- C602: Open-label safety extension study

C601 Primary and Key Secondary Endpoints

Primary Endpoint	DCCR (N = 82)	Placebo (N = 42)	
Mean Change from Baseline in Hyperphagia at Visit 7	-5.94 (0.879)	-4.27 (1.145)	
LS Mean Difference [DCCR-Placebo] (SE)		-1.67 (1.294)	
p-value		0.1983	
Key Secondary Endpoints			
Clinical Global Impression of Improvement at Visit 7 (CGI-I))29	
Mean Change From Baseline in Body Fat Mass (DXA))25	
Caregiver Global Impression of Change at Visit 7 (Caregiver GI-C)		0.409	

Impact of COVID-19 Pandemic on DESTINY PWS

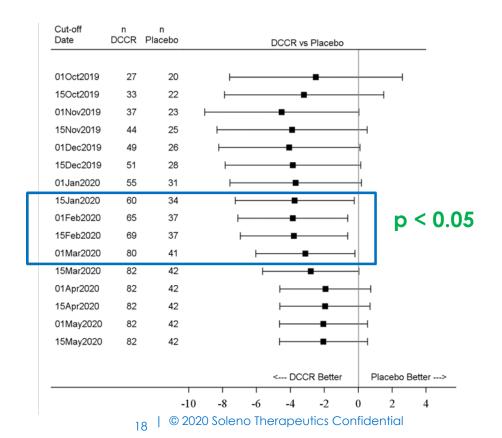
- Comprehensive analyses undertaken based on
 - Published statistical guidance from the FDA and from industry publications^{1,2}
 - Published literature on impact of COVID-19 (COVID) pandemic on childhood psychiatric conditions³
 - FPWR Global Registry COVID Pandemic Impact survey⁴
- Expected that subjective endpoints more likely to be impacted
 - HQ-CT
 - Caregiver GI-C
 - PWS Profile (PWSP)
 - Others

¹ U.S. FDA. Guidance for Industry: Statistical Considerations for Clinical Trials During the COVID-19 Public Health Emergency. June 2020.

² Meyer et al. Statistical Issues and Recommendations for Clinical Trials Conducted During the COVID-19 Pandemic. Statistics in Biopharmaceutical Research. 2020;12, 2020(4):399-411.

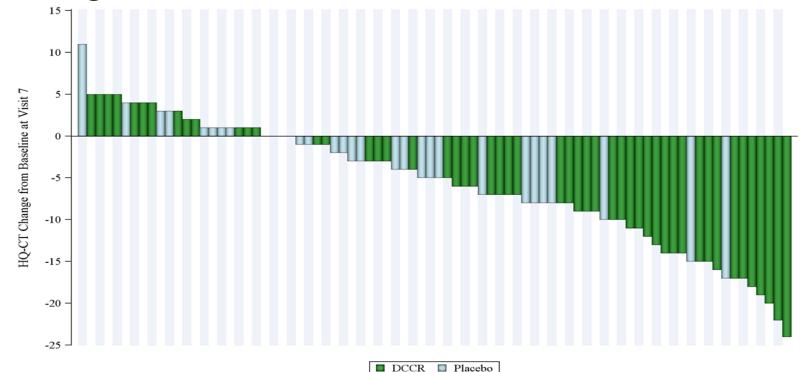
³ Aman MG, Pearson DA. Challenges for Child and Adolescent Psychiatric Research in the Era of COVID-19. J Child Adolesc Psychopharmacol. 2020;30(5):280-284.

⁴Foundation for Prader-Willi Research. PWS Registry Data: Impact of COVID-19 on PWS Families. https://www.fpwr.org/blog/pws-registry-data-impact-of-covid-19-on-pws-families-infographic and unpublished data, January 2021.

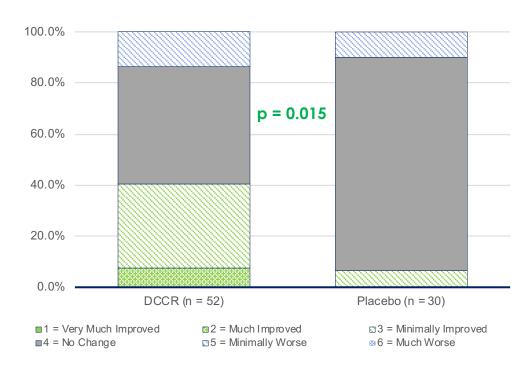

C601 Primary and Key Secondary Endpoints

	All Data		Data through March 1, 2020	
Primary Endpoint	DCCR (N = 82)	Placebo (N = 42)	DCCR (N = 80)	Placebo (N = 40)
Mean Change from Baseline in Hyperphagia at Visit 7	-5.94 (0.88)	-4.27 (1.15)	-6.64 (1.00)	-3.51 (1.28)
LS Mean Difference [DCCR-Placebo] (SE)	LS Mean Difference [DCCR-Placebo] (SE) -1.67(1.29)		-3.13 (1.48)	
p-value	0.198		0.037	
Key Secondary Endpoints				
Clinical Global Impression of Improvement at Visit 7 (CGI-I)	0.03		0.0)15
Mean Change From Baseline in Body Fat Mass (DXA) at Visit 7	0.03		0.0	004
Caregiver Global Impression of Change at Visit 7 (Caregiver GI-C)	0.	41	0.0	031

Analyses in this presentation are preliminary and may be subject to change.

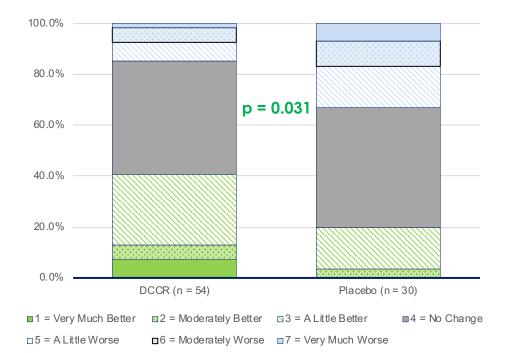


C601 HQ-CT Changes in HQ-CT by Cut-off Date



HQ-CT Changes from Baseline Waterfall Plot through March 1, 2020

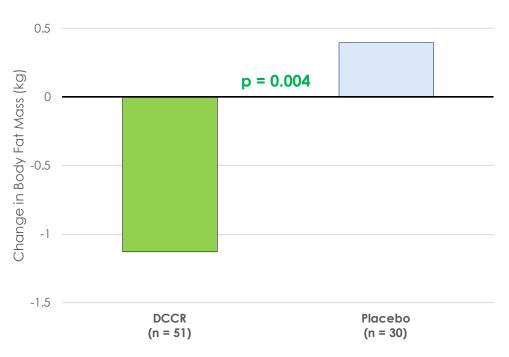
C601 Key Secondary Endpoint: CGI-I



CGI-I Rating	DCCR (n = 52)	Placebo (n = 30)
Improved	40.4%	6.7%
No Change	46.2%	83.3%
Worse	13.5%	10.0%

p-value using CMH; all observed values through March 1, 2020 Using imputation for missing data p=0.037

C601 Key Secondary Endpoint: Caregiver GI-C



Caregiver GI-C Rating	DCCR (n = 54)	Placebo (n = 30)
Better	40.8%	20.0%
No Change	44.4%	46.7%
Worse	14.9%	33.4%

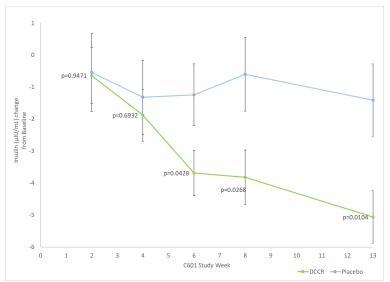
p-value using CMH; all observed values through March 1, 2020 Using imputation for missing data p = 0.086

C601 Key Secondary Endpoint: Body Fat Mass

Observed values through March 1, 2020 Using imputation for missing data p = 0.005

Body Composition Changes

C601 Baseline	Body Composition Parameter	After 12 months Open-label DCCR
121.28 kg	Total Mass (kg)	94.72
62.26 kg	Fat Mass (kg)	31.69
55.93 (kg)	Lean Mass (kg)	59.63
52.7% (kg)	Percent Body Fat	34.7%


C601 Behavioral Endpoints, data through March 1, 2020

PWSP Domain	p-value DCCR vs Placebo
Aggressive Behaviors	0.048
Anxiety	0.018
Rigidity, Irritability	0.003
Compulsivity	0.008
Depression	0.185
Disordered Thinking	0.011
DBC-2	
Total Score	0.009
Communication Disturbance	0.003
Social Relating	0.008

DCCR: Changes in Cardiometabolic Markers

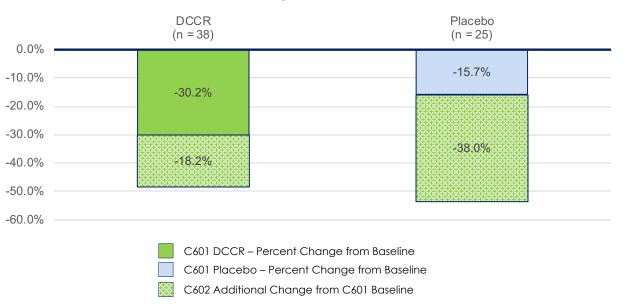
Insulin Change from Baseline

Change from Baseline to Visit 7 (through March 1, 2020)	DCCR vs Placebo p-value
Decreased Acylated Ghrelin (active form)	0.009
Decreased Leptin	<0.0001
Increased Adiponectin	<0.0001

Source: Soleno Therapeutics Preliminary Analysis

Conclusions

- Clear impact of COVID pandemic on the caregivers and subjects in DESTINY PWS
- Primary, subjective key secondary, and several other efficacy variables that were not significant in the topline analyses, are significant with pre-March 1, 2020 analyses
- No differences observed in the safety of DCCR compared to the profile seen in the topline analyses


C602 Interim Analysis

- Data includes those subjects who completed C602 Visit 6 (i.e., 13 weeks of open-label DCCR treatment)
 - -N = 63
 - DCCR = 38
 - Placebo = 25
 - Demographics and baseline characteristics comparable to the ITT Population
 - Lower percent of subjects in UK compared to C601 ITT population due to later start of C601 compared to US
 - Interim analysis, partially verified data

Changes in HQ-CT from C601 Baseline at Visit 7 and Further Changes in C602

Percent Changes from C601 Baseline

DCCR Safety Profile

- The safety profile of DCCR was generally consistent with the known profile of diazoxide and prior experience with DCCR
- The most common adverse events reported were hypertrichosis, peripheral edema and hyperglycemia
- Most events were Grade 1 in severity
- No Grade 4 or higher events were reported in this study
- There were no serious unexpected adverse events (SUSARs) related to DCCR

Next Steps

- Met with FDA Nov 2020, minutes issued Dec 2020
 - Discussed potential adequacy of data from completed and ongoing studies
 - Agreed to review plans for additional analyses, including comparisons to external data sources
 - FDA did not rule out possibility of an additional clinical trial
- Pre-Covid data submitted to FDA after Nov 2020 meeting
- Potential NDA submission in 2H 2021

Pipeline – Other Opportunities for DCCR

	Potential Upside Opportunities for DCCR	Estimated US Prevalence
Obesity	Fragile X-PWS Phenotype	6,700 - 8,500
	Schaaf-Yang syndrome	200 - 300
Syndromic	Smith Magenis syndrome	13,000 - 22,000
Sync	MC4R deficiency	32,700 - 163,000
Other	Chronic Hyperinsulinism	820 - 1,100
₹	Glycogen Storage Disease Type 1	2,800 - 6,800

Extensive IP Protection

Three families of patents being prosecuted in all major pharma markets – primary cases on all three issued

Pharmaceutical formulations of K_{ATP} channel activators and uses thereof PWS relevant claims: treatment of hyperphagia

Salts of K_{ATP} channel
activators and uses thereof
PWS relevant claims:
treatment of PWS +
Composition of Matter
coverage of DCCR

Methods for treating subjects
with PWS or SMS
PWS relevant claims:
reductions in aggressive
behavior + others

- Extensive protection of DCCR drug active, drug product, method of manufacture in the treatment of PWS and more generally in syndromic obesity expiring 2025-2035
- Composition of matter (potential for extension to 2034 in US and to 2031 in EU)
- Up to 6 patents are orange book listable (up to 3 expiring in 2035)

Financial Highlights

Cash balance at end of Q3 2020 \$56.1M

No Debt

•	Closed Public Offering June 26 th , 2020	\$57.5M
•	Common shares outstanding at end of Q3 2020	79.6M
•	Fully Diluted shares at end of Q3 2020	89.9M

Spending remains consistent with previously discussed plans

Key takeaways for creating shareholder value

- PWS is a rare disease, US estimate of 10,000 20,000 people
- DCCR is focused on treating the highest unmet needs of PWS for which no approved treatments exist
- Once a day tablet formulation with orphan pricing
- Focused physician population that can be targeted by a small commercial footprint
- Substantial potential upside with other rare disease indications

Soleno Therapeutics (NASDAQ: SLNO)

Strategic Highlights

Orphan asset in Phase III Program for Prader-Willi syndrome

Topline data reported in June 2020

Significant commercial potential in PWS, an orphan indication with high unmet need.

No approved treatments for hyperphagia, the hallmark symptom of PWS

IP protection to mid-2030s

Protected by multiple layers of granted and pending patents

Provides composition of matter protection, as well as protection of formulations, and method of use

Substantial potential for patent term extension

Orphan Drug and Fast Track Designations

Orphan designation in the US and EU. Fast Track granted

Significant upside potential in other indications

Compelling product profile

Addresses hallmark symptoms of PWS

Clinically relevant improvements in hyperphagia, behaviors, and body composition with established decades-long safety profile Financed by leading healthcare investors

Financed Phase III
Program

Leading HC-focused institutional investors, Abingworth, Vivo, Oracle Partners and Jack Schuler

Corporate Presentation

February 2021 | Soleno Therapeutics

