Abstract 2739 Therapeutic Response to DCCR (Diazoxide Choline) Extended-Release Tablets in Patients with Prader-Willi Syndrome Prior to the Onset of the COVID-19 Pandemic

Jennifer L Miller MD¹, Eric I Felner MD MS², Nicola Bridges DM³, Lynne M Bird MD⁴, Ashley H Shoemaker MD⁷, Jack A Yanovski MD PhD⁸, Merlin G Butler MD PhD⁹, Kathryn S Obrynba MD¹⁰, Parisa Salehi MD¹¹, Patricia C Hirano MPH¹², Kristen Yen MS¹², Neil M Cowen PhD¹², Anish Bhatnagar MD¹², for the DESTINY PWS Investigators ¹University of Florida College of Medicine, ²Emory University School of Medicine, ³Chelsea and Westminster Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University Nedical Center, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University Nedical Center, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University Nedical Center, ⁴University of California, San Diego / Rady's Children's Hospital, ⁴University Nedical Center, ⁴University N ⁸US National Institute of Health, ⁹University of Kansas Medical Center, ¹⁰Nationwide Children's Hospital, ¹¹Seattle Children's Hospital, ¹²Soleno Therapeutics

Objective

The objective of this analysis was to evaluate the therapeutic response of participants with Prader-Willi syndrome to DCCR (Diazoxide Choline) Extended-Release Tablet prior to the onset of the COVID-19 pandemic.

Background

Prader-Willi syndrome (PWS), a rare genetic neurobehavioral-metabolic disease, is characterized by hyperphagia, accumulation of excess fat, hypotonia, ar behavioral/psychological complications. Patients with F and their families were significantly disrupted by the COVID-19 pandemic. There are no approved treatments for hyperphagia in PWS. In the analysis of the full dataset (pre-COVID + COVID) the primary endpoint, HQ-CT, trended toward significance while 2 of three secondary endpoints, Clinical Global Impression of Improvement [CGI-I] and body fat mass were significant.

Methods

DESTINY PWS Study

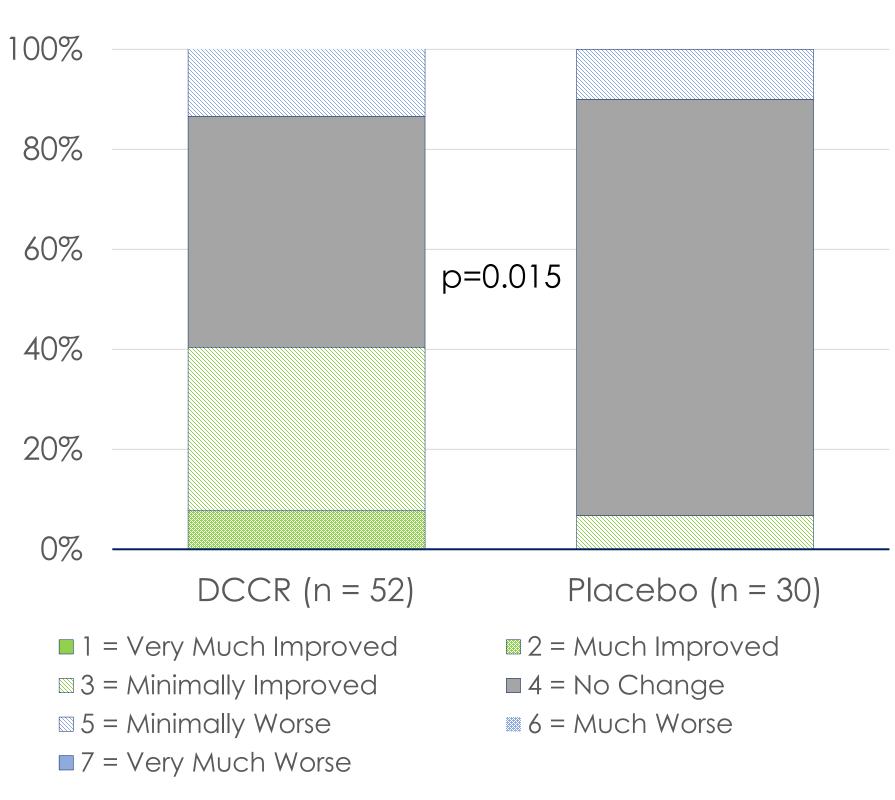
- 13-week, double-blind, placebo-controlled, parallel arm study • 29 sites in the US and UK
- Randomized 127 subjects with genetically confirmed PWS ages 4
- and older with hyperphagia of whom 124 had a post-baseline assessment of primary endpoint (necessary for MMRM analysis) Stratified by growth hormone use and Baseline HQ-CT score
- Endpoints
 - Primary Hyperphagia Questionnaire for Clinical Trials (HQ-CT)
 - Secondary
 - Clinical Global Impression of Improvement (CGI-I), Caregiver Global Impression of Change (Caregiver GI-C), and Body fat mass by DXA

Exploratory – behavioral assessment and cardiometabolic markers COVID-19

- The COVID-19 pandemic caused significant disruptions in the lives of participants as well as their caregivers making it more difficult to control access to food and manage behavioral issues, with increased caregiver stress and could have affected the efficacy results.^{1,2}
- March 1, 2020 cutoff used prior to any significant effect of the pandemic

Analysis

- Primary HQ-CT Mixed Model for Repeat Measures
- CGI-I and Caregiver GI-C Cochran-Mantel-Haenzsel (CMH) test with modified ridit scores, stratified by randomization strata
- Body fat ANCOVA
- Exploratory behavioral endpoints Wilcoxon-Mann-Whitney test
- Cardiometabolic markers ANCOVA
- All analyses were conducted with windowed visit data
- 1. Wieting J, et al. Behavioural change in Prader-Willi syndrome during COVID-19 pandemic. J Intellect Disabil 2021; Mar 22 online ahead of print.
- 2. <u>PWS Registry Data: Impact of COVID-19 on PWS Families [INFOGRAPHICS]</u> (fpwr.org)


Results

/	
nd	
PWS	

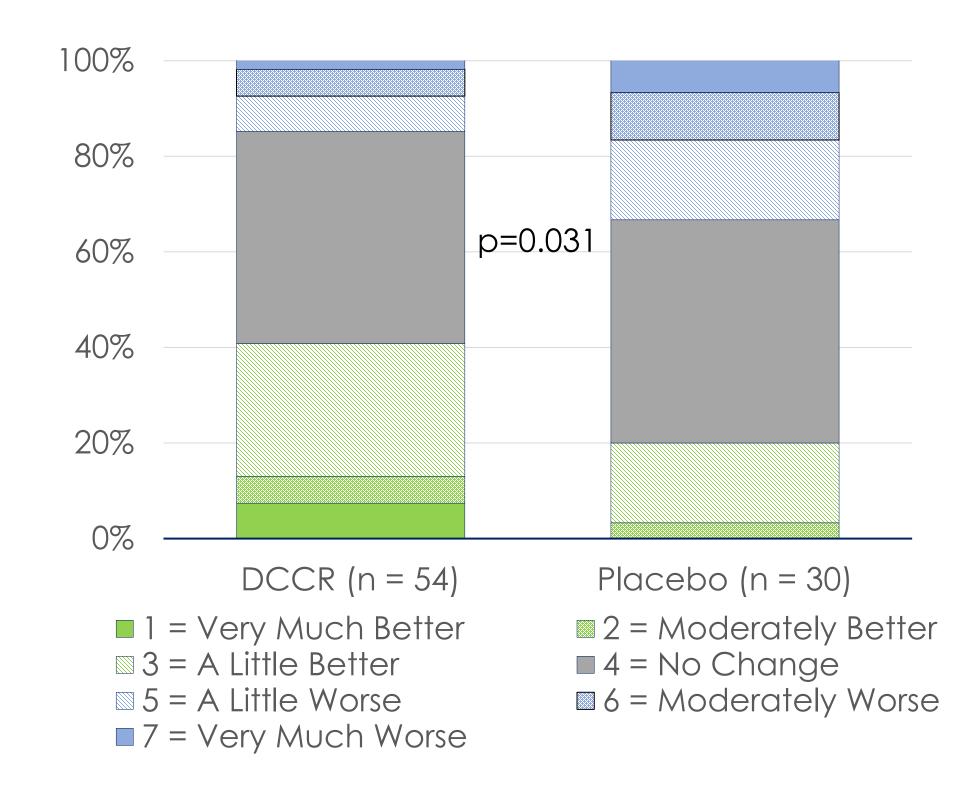
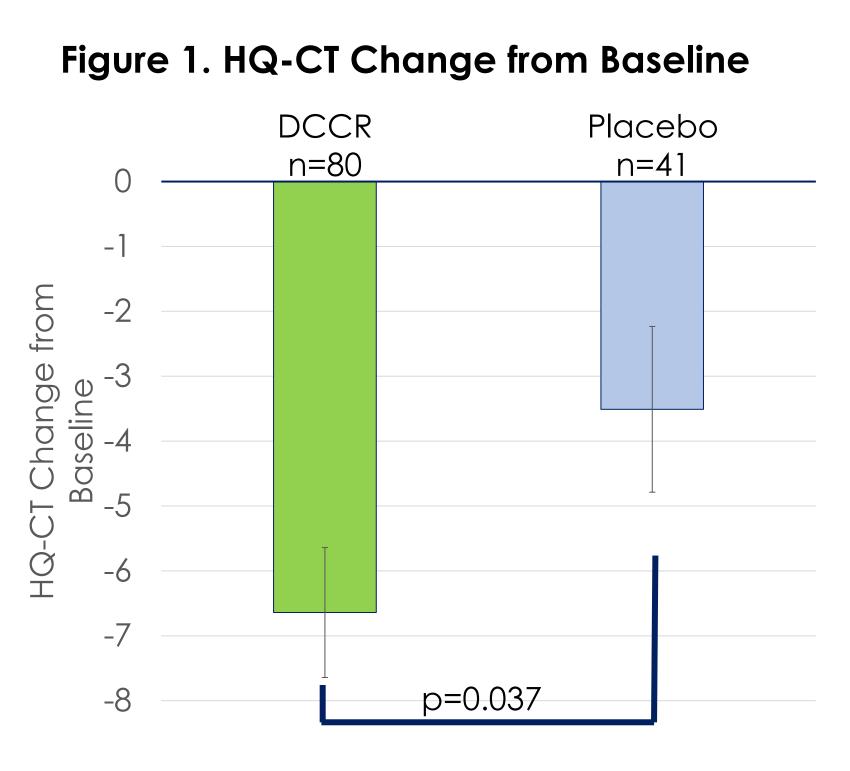
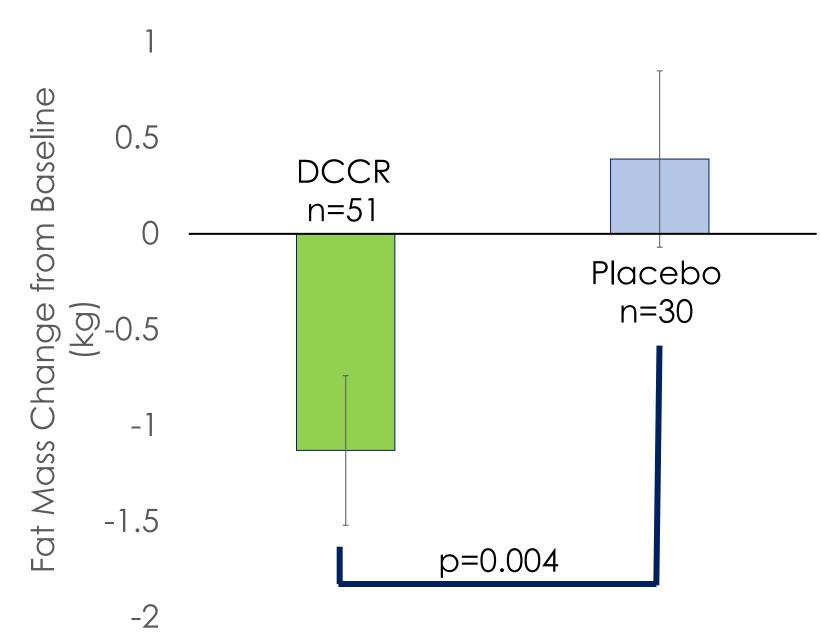


Table 1. Demographic and Baseline Characteristics			
	DCCR	Placebo	Overall
	(N=82)	(N=42)	(N=124)
Age (years) Mean (SD)	13.4 (6.8)	13.6 (7.4)	13.5 (7.0)
Sex n (%)			
Male	36 (43.9)	19 (45.2)	55 (44.4)
Female	46 (56.1)	23 (54.8)	69 (55.6)
Height (cm) Mean (SD)	146.3 (18.5)	147.5 (20.1)	146.7 (19.0)
Weight (kg) Mean (SD)	62.2 (30.4)	60.4 (29.6)	61.6 (30.0)
HQ-CT Mean (SD)	23.0 (6.03)	21.9 (5.08)	22.6 (6.57)
Body fat mass (kg) Mean (SD)	27.67 (16.62)	26.47 (17.58)	27.25 (16.90)
Lean body mass (kg) Mean (SD)	29.25 (14.16)	28.31 (12.52)	28.92 (13.56)
Cardiometabolic parameters			
Leptin (ng/mL) Mean (SD)	37.6 (28.6)	36.3 (28.6)	37.2 (28.5)
Adiponectin (ng/mL) Mean (SD	11213 (6978)	10414 (6087)	10947 (6680)
Acylated ghrelin (pg/mL) Mean	242.0 (149.8)	276.7 (253.7)	253.7 (163.5)
(SD)			
Fasting Insulin (µIU/mL) Mean (SD)	12.07 (15.25)	9.74 (5.99)	11.28 (12.90)
PWS Genetic Sub-Type, n (%)			
Deletion	48 (58.5)	28 (66.7)	76 (61.3)
Non-deletion	33 (40.2)	14 (33.3)	47 (37.9)
Not available	1 (1.2)	0 (0.0)	1 (0.8)
Country, n (%)			
United Kingdom	19 (23.2)	6 (14.3)	25 (20.2)
United States	63 (76.8)	36 (85.7)	99 (79.8)
Growth Hormone Status, n (%)			
Currently Treated	69 (84.1)	35 (83.3)	104 (83.9)
Not Currently Treated	13 (15.9)	7 (16.7)	20 (16.1)


Figure 2. Clinical Global Impression of Improvement


Figure 3. Caregiver Global Impression of Change

Pro Pro

Table 2. Behavioral Endpoints

		-	
ader-Willi Syndrome ofile Questionnaire omain	DCCR Mean ± SD	Placebo Mean ± SD	p-value DCCR vs Placebo
ggressive Behaviors	-1.5 ± 4.35	-0.2 ± 3.18	0.048
nxiety	-3.6 ± 5.39	-1.0 ± 4.04	0.018
gidity, Irritability	-3.4 ± 4.74	-0.4 ± 3.53	0.003
ompulsivity	-2.8 ± 3.45	-0.5 ± 3.11	0.008
epression	-0.9 ± 1.97	-0.3 ± 1.51	0.185
sordered Thinking	-1.5 ± 2.24	-0.3 ± 1.59	0.011
evelopmental havior Checklist – 2			
tal Score	-10.2 ± 18.1	-3.4 ± 21.3	0.009
Communication Disturbance	-1.7 ± 2.58	+0.2 ± 3.10	0.003
ocial Relating	-1.2 ± 2.54	-0.1 ± 2.17	0.008

Table 3. Cardiometabolic Endpoints

Cardiometabolic Indpoint	LSmean difference (95% CI)	p-value DCCR vs Placebo
.eptin (ng/mL)	-16.3 (-23.1, -9.4)	<0.0001
nsulin ((µIU/mL)	-2.31 (-4.56, -0.06)	0.0449
Acyl Ghrelin (pg/mL)	-76 (-132.4, -19.7)	0.0089
Adiponectin (µg/ML)	-3.50 (2.05, 4.99)	<0.0001

TEAE **TEAE** related to stu SAE SAE related to stud **TEAE leading to pr**

TEAEs occurr

Hypertrichosis Peripheral edema Upper respiratory Headache Hyperglycemia Hirsutism Diarrhea Viral infections

TEAEs that are con comorbidities of PWS

- comparable

In this pre-COVID analysis, compared to placebo, DCCR significantly improved a range of behaviors, body composition, and cardiometabolic endpoints and Global Impressions of the subject reported by caregivers and clinicians. DCCR may contribute to improved outcomes and quality of life of patients with PWS.

Acknowledgements

The DESTINY PWS Investigators thank the PWS patients and their families who participated in this clinical study for their commitment, diligence and sacrifice, which made the study possible.

Safety

	DCCR	Placebo
	(n=84)	(n=42)
	N (%)	N (%)
	67 (79.8%)	31 (73.8%)
udy drug	49 (58.3%)	21 (50.0%)
	6 (7.1%)	0 (0.0%)
dy drug	1 (1.2%)	0 (0.0%)
remature study discontinuation	4 (4.8%)	1 (2.4%)
		-

in more man 5 /0 of subjects	in einer arm order	ed by overall
incidence		
	25 (29.8%)	6 (14.3%)
	15 (17.9%)	4 (9.5%)
tract infections	9 (10.7%)	5 (11.9%)
	5 (6.0%)	6 (14.3%)
	9 (10.7%)	0 (0.0%)
	6 (7.1%)	3 (7.1%)
	1 (1.2%)	4 (9.5%)
	0 (0.0%)	3 (7.1%)
mmon complications and	12 (14.3%)	12 (28.6%)

Key Points

• In the pre-COVID analysis, compared to placebo, DCCR treatment resulted in statistically significant improvements in hyperphagia, CGI-I and Caregiver GI-C and body fat There were statistically significant improvements with

DCCR treatment compared to placebo in behavioral and cardiometabolic exploratory endpoints

The frequency of TEAEs and drug related TEAEs were

Although there were more SAEs reported in the DCCR arm compared to placebo, only one was considered related to DCCR and was expected

Conclusions